Cessna 172/C-172 2014

The following maneuvers are set forth only as a guide to the student and the instructor on how to teach and in what order to perform steps while executing the maneuvers. They serve to standardize the maneuvers, which in turn aids students in transitioning between instructors as well as aiding check instructors during progress, and stage checks. Small differences will always occur between instructors and students, however these procedures should be adhered to as closely as possible. In all cases, the appropriate checklists shall be used when warranted. Refer to the Airplane Flying Handbook (AFH) or the Pilots Operating Handbook (POH) for more details.

Airspeeds and Limitations

<table>
<thead>
<tr>
<th></th>
<th>SP</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{SO})</td>
<td>40 KIAS</td>
<td>33 KIAS</td>
</tr>
<tr>
<td>(V_{S})</td>
<td>48 KIAS</td>
<td>44 KIAS</td>
</tr>
<tr>
<td>(V_{X})</td>
<td>62 KIAS</td>
<td>60 KIAS</td>
</tr>
<tr>
<td>(V_{Y})</td>
<td>74 KIAS</td>
<td>79 KIAS</td>
</tr>
<tr>
<td>(V_{A}) (Min. Weight)</td>
<td>90 KIAS</td>
<td>81 KIAS</td>
</tr>
<tr>
<td>(V_{A}) (Max. Weight)</td>
<td>105 KIAS</td>
<td>99 KIAS</td>
</tr>
<tr>
<td>(V_{FE})</td>
<td>110 KIAS</td>
<td>110 KIAS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>SP</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{FE})</td>
<td>85 KIAS</td>
<td>85 KIAS</td>
</tr>
<tr>
<td>(V_{NO})</td>
<td>129 KIAS</td>
<td>129 KIAS</td>
</tr>
<tr>
<td>(V_{NE})</td>
<td>163 KIAS</td>
<td>163 KIAS</td>
</tr>
<tr>
<td>Max. X-Wind</td>
<td>15 Knots</td>
<td>15 Knots</td>
</tr>
<tr>
<td>Best Glide</td>
<td>68 KIAS</td>
<td>65 KIAS</td>
</tr>
<tr>
<td>Cruise Climb</td>
<td>85 KIAS</td>
<td>85 KIAS</td>
</tr>
<tr>
<td>Final Approach</td>
<td>70 KIAS</td>
<td>70 KIAS</td>
</tr>
</tbody>
</table>

Altitude

Maneuver must be completed above this altitude.

Clearing Turns

Complete a 90° turn to the left followed by a 90° turn to the right. (At least 180° of turning.

Desired Heading

This is the Direction of the Entry of the Maneuver.

Flow Pattern

<table>
<thead>
<tr>
<th></th>
<th>Both</th>
<th>Rich/As Desired</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel</td>
<td>Both</td>
<td>Rich/As Desired</td>
</tr>
<tr>
<td>Mixture</td>
<td>Set</td>
<td>Both</td>
</tr>
<tr>
<td>Power</td>
<td>Set</td>
<td>Both</td>
</tr>
<tr>
<td>Magnetos</td>
<td>Both</td>
<td>Both</td>
</tr>
<tr>
<td>Seat Belts</td>
<td>Secure</td>
<td>Both</td>
</tr>
</tbody>
</table>

Slow Flight & Stalls

Slow Flight (Landing Configuration)

1. Altitude Above 1500’ AGL
2. Flow Pattern Complete
3. Clearing Turns Complete
4. Desired Heading....... Pilot’s discretion
5. Power 1500 RPM
6. Flaps Extend one notch at a time to full once in the white arc
7. Altitude Maintain (+/- 100 Ft. for Private or +/- 50 Ft. for Commercial)
8. Airspeed \(V_{SO} \) (+10/-0 Knots For Private or +5/-0 Knots for Commercial)
9. Power Increase As Required
10. Heading Maintain (+/- 10°)
 Recovery
11. Power Increase Gradually
12. Altitude Maintain
13. Heading Maintain
14. Flaps Retract (One notch at a time)
Slow Flight (Departure Configuration)
1. Altitude Above 1500’ AGL
2. Flow Pattern Complete
3. Clearing Turns Complete
4. Desired Heading Pilot’s Discretion
5. Power 1500 RPM
6. Altitude Maintain (+/- 100 Ft. for Private or +/- 50 Ft. for Commercial)
7. Airspeed V_S (+10/-0 Knots For Private or +5/-0 Knots for Commercial)
8. Power Increase As Required
9. Heading Maintain (+/- 10°)

Recovery
10. Power Increase Gradually
11. Altitude Maintain
12. Heading Maintain

Power-Off Stall (Approach to Landing)
1. Altitude Above 1500’ AGL
2. Flow Pattern Complete
3. Clearing Turns Complete
4. Desired Heading Pilot’s Discretion
5. Power 1500 RPM
6. Flaps Extend one notch at a time to full once in the white arc
7. Heading Maintain (+/- 10°)
8. Airspeed 70 Knots and 500 FPM Descent Rate
9. Power Reduce to Idle
10. Pitch As required to induce a stall

Recovery
11. Recognize and Announce Stall
12. Reduce Pitch, Increase Power to Full, and Level Wings
13. Flaps Retract 1st notch immediately
14. Pitch V_X
15. Flaps Retract 2nd notch when VSI indicates a climb
16. Pitch V_Y
17. Flaps Retract 3rd notch when VSI indicates a climb
Power-On Stall (Takeoff or Departure)
A Power-on stall can be accomplished as either a takeoff or a departure stall. A takeoff stall shall be performed with the aircraft configured as it would be in the takeoff configuration. A departure stall shall be performed in the clean configuration. Both are appropriate and both should be taught to the student. During progress checks, stage checks or checkrides, it shall be at the examiner’s discretion as to the configuration to be used.

1. Altitude Above 1500’ AGL
2. Flow Pattern Complete
3. Clearing Turns Complete
4. Desired Heading Pilot’s Discretion
5. Power 1500 RPM
6. Flaps Extend to Takeoff or Departure configuration in the white arc
7. Heading Maintain (+/- 10°)
8. Airspeed 70 Knots
9. Power Increase to Full
10. Pitch As required to induce a stall

Recovery
11. Recognize and Announce Stall
12. Reduce Pitch, Increase Power to Full, and Level Wings
13. PitchV_x
14. Flaps Retract 1st notch when VSI indicates a climb (if down)
15. Pitch V_y

Accelerated Stall
1. Altitude Above 3000’ AGL
2. Clearing Turns Complete
3. Desired Heading Pilot’s Discretion
4. Power 1800 RPM
5. Airspeed 80 Knots
6. Bank Roll into 45° to 50° bank
7. Pitch As required to maintain level flight

Recovery
8. Recognize and Announce Stall
9. Reduce Pitch, Increase Power, Level Wings
Ground Reference Maneuvers (Private)

S-Turns Across a Road
Select a road with a suitable emergency landing area

1. Altitude 1000’ AGL
2. Flow Pattern........... Complete
3. Clearing Turns Complete
4. Desired Heading....... Downwind
5. Power 2300 RPM
6. Airspeed Stabilized @ or Below Vₐ
7. Altitude Maintain (+/- 100 ft)
8. Airspeed Maintain (+/- 10 Knots)

The maneuver starts when airplane is perpendicular with the road

9. Bank....................... Roll into Steep Bank (~ 25° - 30°)
 At the 45° point (of the 180° turn)
10. Bank..................... Gradually decrease bank to a Medium Bank turn (~ 20° - 30°)
 Crab into the Wind
 At the 135° point (of the 180°)

The airplane must be perpendicular to the road when crossing back over it. (This should not be accomplished prior to the road)

11. Bank..................... Gradually decrease bank to a Shallow Bank turn (~ 0° - 20°)
 At the 180° point (of the 180°)

12. Bank..................... Gradually increase bank to a Medium Bank turn (~ 20° - 30°)
 Crab into the Wind
 At the 225° point (of the 180° turn)

13. Bank..................... Gradually increase bank to a Steep Bank (~ 25° - 30°)

The airplane must be perpendicular to the road when crossing back over it. (This should not be accomplished prior to the road)

At this point the maneuver may be repeated or you can return to straight and level flight

The bank angle is only a recommended bank angle. The actual angle of bank will depend on wind direction and speed.

Turns Around a Point
Select a point with a suitable emergency landing area

1. Altitude 1000’ AGL
2. Flow Pattern........... Complete
3. Clearing Turns Complete
4. Desired Heading....... Downwind
5. Power 2300 RPM
6. Airspeed Stabilized @ or Below Vₐ
7. Altitude Maintain (+/- 100 ft)
8. Airspeed Maintain (+/- 10 Knots)

The maneuver starts when airplane is perpendicular with the reference point

9. Bank....................... Roll into Steep Bank (~ 25° - 30°)
 At the 45° point (of the 360° turn)
10. Bank..................... Gradually decrease bank to a Medium Bank turn (~ 20° - 30°)
 Crab into the Wind
 At the 135° point (of the 360°)

11. Bank..................... Gradually decrease bank to a Shallow Bank turn (~ 0° - 20°)
 At the 180° point (of the 360°)
12. Bank..................... Gradually increase bank to a Shallow Bank turn (~ 0° - 20°)
 At the 225° point (of the 180° turn)

13. Bank..................... Gradually increase bank to a Medium Bank turn (~ 20° - 30°)

The airplane must be perpendicular to the road when crossing back over it. (This should not be accomplished prior to the road)

At this point the maneuver may be repeated or you can return to straight and level flight.

The bank angle is only a recommended bank angle. The actual angle of bank will depend on wind direction and speed.
Rectangular Course
Select a course with a suitable emergency landing area
1. Altitude 1000’ AGL
2. Flow Pattern............ Complete
3. Clearing Turns Complete
4. Desired Heading....... Downwind
5. Power.................. 2300 RPM
6. Altitude Maintain (+/- 100ft.)
7. Airspeed Maintain (+/- 10 Knots)
The maneuver should be entered on a 45° angle to the downwind leg.
Downwind to Base- Crab as required to maintain desired flight path over the ground

8. Bank....................Roll into a Steeper Bank (~ 25°-30°) and as the turn progresses reduce the bank angle as needed
Base to Final- Crab as required to maintain desired flight path over the ground

9. Bank....................Roll into a Medium Bank (~ 15°- 25°) and as the turn Progresses reduce the bank angle as needed
Final to Crosswind- Crab as required to maintain desired flight path over the ground

10. Bank....................Roll into a Shallow Bank (~5°- 15°) and as the turn Progresses increase the bank angle as needed
Crosswind to Downwind- Crab as required to maintain desired flight path over the ground

11. Bank...................... Roll into a Medium Bank (~15°-25°) and as the turn Progresses increase the bank angle as needed

Rectangular course can be performed in many different configurations. The flight instructor prior to commencing the maneuver will decide these configurations.
The bank angle is only a recommended bank angle. The actual angle of bank will depend on wind direction and speed.
Takeoff

Normal Takeoff
1. Flaps 0°
2. Power Full
3. Lift Off ~60 Knots
4. Climb V_Y (+10/-5 Knots for Private or +5/-5 Knots for Commercial)

Short-Field Takeoff
1. Flaps 10°
2. Brakes Hold
3. Power Full
 check engine gauges
4. Brakes Release
5. Lift Off ~55 Knots
6. Climb V_X to 50’ or obstacle clearance (+10/-5 Knots for Private or +5/-5 Knots for Commercial)
7. Flaps Retract at 100’ AGL or obstacle clearance
8. Accelerate V_Y (+10/-5 Knots for Private or +5/-5 Knots)

Soft-Field Takeoff
1. Flaps 10°
2. Power Full
3. Control Yoke Full Back*
4. Lift Off At slowest possible airspeed
5. Climb Stay in ground effect until V_X is attained
6. Flaps Retract at 100’ AGL or obstacle clearance
7. Accelerate V_Y (+10/-5 Knots or +5/-5 Knots for Commercial)
 *During soft-field operations in the Cessna 172, sufficiently high angles of attack may be achieved during the takeoff roll which may result in the tail striking the runway surface. Care must be practiced to not allow this situation to occur.

Crosswind Takeoff
1. Flaps 0°
2. Control Yoke Fully into wind
3. Power Full
4. Control Yoke Gradually decrease deflection as airspeed increases so as to no deflection at rotation
6. Climb V_Y (+10/-5 Knots for Private or +5/-5 Knots for Commercial)
Landing

Normal and Crosswind Landing

1. The pattern should be flown 1 mile from the airport. The student should enter the pattern at 90 knots.
2. Maintain a crab angle for the wind and trim for airspeed and perform Flow Pattern.
3. Abeam the numbers first reduce the power to establish descent, then extend 1st notch of flaps, and trim.
4. At 1 mile from the end of the runway, turn base and maintain 80 knots, and extend the 2nd notch of flaps.
5. Turn final to align airplane with the runway, maintain 70 knots (apply gust factor for crosswind and gusts) and extend 3rd notch of flaps, establish a slip for the wind correction.
6. On short final begin to reduce the power; power should be at idle before they begin to flare.
7. Touchdown in a full stall with the ailerons into the wind.

Downwind

1. Airspeed…………… 90 Knots
2. Power………………. Reduce to ~1700 RPM (This will change with temperature)
3. Flaps………………. 10°
 Base (~ 1 mile from the end of the runway)
4. Airspeed…………… 80 Knots
5. Power………………. Adjust as necessary
6. Flaps……………….. 20° - caution- extend only below 85 knots

Final

7. Airspeed…………… 70 Knots
8. Power………………. Adjust as necessary
9. Flaps………………... 30°
10. Airspeed…………… 65 Knots on short final (Normal Landing only)

Short-Field Landing

1. Everything in a short field should be the same as a normal landing until short final.
2. Approach speed should be as published in the POH. (~ 65 Knots)
3. Maintain a constant angle of descent down to the touch down point. (Do not pick a point ahead of the touchdown point and flare to it)
4. If an obstacle needs to be cleared the angle of descent should be made to clear the obstacle. (The obstacle should be no more then 50 feet high)
5. On short final begin to decelerate to a full stall landing, which should be at the runway.
6. Use maximum braking.
 Airplane must touch down beyond 200 feet (Private) or 100 feet (Commercial) of the specified point.

Although it will be necessary to use maximum braking on an actual short-field landing or for an emergency landing, *simulated* maximum braking shall be used for practice short-field landings in an effort to prevent excessive wear on brakes.

Downwind

1. Airspeed…………… 90 Knots
2. Power………………. Reduce to ~1700 RPM (This will change with temperature)
3. Flaps………………. 10°
 Base (~ 1 mile from the end of the runway)
4. Airspeed…………… 80 Knots
5. Power………………. Adjust as necessary
6. Flaps……………….. 20° - caution- extend only below 85 knots

Final

7. Airspeed…………… ~ 65 Knots
8. Power………………. Adjust as necessary
9. Flaps………………... 30°
Soft-Field Landing

1. Everything in a soft field should be the same as a normal landing until the flare.
2. Just prior to the main wheels touchdown a small amount of power (~100-200 RPM) may be added in to soften the landing and keep the nose from touching down to early.
3. The airplane should touchdown at its lowest possible airspeed.
4. As the speed of the airplane slows down on the ground the control yoke should be gradually increased to full back, so the airplanes nose wheel will not touch down until the slowest possible speed.
5. Once the nose wheel touches down keep the control yoke full back, and do not use brakes unless it is necessary. Apply aileron correction as necessary for x-wind.

Downwind

1. Airspeed……………. 90 Knots
2. Power…………….. Reduce to ~1700 RPM (This will change with temperature)
3. Flaps…………….. 10°
 - Base (~ 1 mile from the end of the runway)
4. Airspeed……………. 80 Knots
5. Power…………….. Adjust as necessary
6. Flaps…………….. 20°– caution- extend only below 85 knots

Final

7. Airspeed……………. 70 Knots
8. Power…………….. Adjust as necessary
9. Flaps…………….. 30°
10. Airspeed…………….. 65 Knots on short final

During soft-field operations in the Cessna 172, sufficiently high angles of attack may be achieved during the landing roll which may result in the tail striking the runway surface. Care must be practiced to not allow this situation to occur.

Go-Around

1. Power…………….. Full
2. Flaps…………….. Retract first notch immediately
 - Airplane should be leveled off until V_X is obtained
3. Climb ………………… V_X to 100’ or obstacle clearance
4. Flaps…………….. Retract 2nd notch when VSI indicates a climb and 100’
5. Pitch…………….. V_Y
6. Flaps…………….. Retract 3rd notch when VSI indicates a climb and 200’
 - If an obstacle needs to be cleared the 2nd notch of flaps should be retracted when cleared of the obstacle and the 3rd notch of flaps should be retracted at 200’

Performance Maneuvers

Steep Turns

1. Altitude……………. Above 1500’ AGL
2. Flow Pattern………. Complete
3. Clearing Turns …….. Complete
4. Desired Heading…… Pilot’s Discretion
5. Power…………….. 2300 RPM
6. Airspeed…………….. Stabilized @ or Below V_A (~100 KIAS)
7. Bank……………….. As Required (45° for Private or 50° for Commercial) (+/- 5°)
8. Power…………….. Increase to Maintain Airspeed
9. Altitude…………… Maintain (+/- 100 Ft.)
10. Airspeed…………… Maintain (+/- 10 Knots)
11. Roll Out…………… On Specified Heading (+/- 10°)
12. Power…………….. 2300 RPM
13. Repeat in Opposite Direction (if desired)
Emergency

Emergency Descent
1. Flow Pattern Complete
2. Clearing Turns Complete
3. Power Idle
4. Flaps Extend to Full when in the White Arc
5. Bank 45-50°
6. Pitch V_{FE}

Commercial Maneuvers

Chandelles
1. Altitude 1500’ AGL
2. Flow Pattern Complete
3. Clearing Turns Complete
4. Desired Heading Crosswind (Turn should be made towards the crosswind)
5. Power 2300 RPM
6. Power Full
7. Bank Angle 30°
8. Pitch Gradually pitch up so the plane is max Pitch up at the 90° Point
9. Bank At the 90° Point gradually roll out the bank so the plane is 0° Bank at the 180° Point
10. Pitch Maintain constant after 90° Point
11. Airspeed +5 KIAS of V_S at the 180° Point
12. Altitude Maintain Final Altitude with Minimum Altitude Loss
13. Heading Maintain (+/- 10°)

Lazy Eights
1. Altitude 1500’ AGL
2. Flow Pattern Complete
3. Clearing Turns Complete
4. Desired Heading Pilot’s Discretion
5. Power 2300 RPM
6. Bank Gradually Roll in so the plane is 15° Bank at the 45° Point
7. Pitch Gradually Pitch Up until 45° Point
8. Bank Gradually Roll Into 30° when at the 45° Point
9. 90° Point 30° Bank, Level Pitch
10. Bank Gradually Roll out so the plane is 15° at the 135° Point
11. Pitch Gradually Pitch Down until the 135° Point
12. Bank Gradually Roll out so the plane is 0° at the 180° Point
13. 180° Point Return To Straight And Level
14. Repeat In Opposite Direction

Tolerance @ each 180° Point for Altitude is +/- 100ft., Airspeed is +/- 10 Knots, and Heading is +/- 10°
Eights-on-Pylons
Select a course with a suitable emergency landing area
1. **Altitude** Pivotal Altitude (no lower than 500’ AGL)
2. **Flow Pattern** Complete
3. **Clearing Turns** Complete
4. **Desired Heading** Downwind
5. **Power** 2300 RPM
6. Pick 2 pylons ~ 1 mile apart from each other (The pylons should allow straight and level flight between the pylons for approximately 3 to 5 seconds)
7. Enter downwind on a 45° angle to the 1st pylon
8. Maintain the reference point by circling the pylon and adjusting for the pivotal altitude
9. Repeat around the 2nd pylon

Steep Spiral
1. **Altitude** Adequate to allow for 3-360° power-off turns (~4000 Ft. AGL)
2. **Flow Pattern** Complete
3. **Clearing Turns** Complete
4. **Desired Heading** Downwind
5. **Power** Idle
6. **Airspeed** Best glide (+/- 10 Knots)
7. **Bank Angle** Wind drift correction to maintain constant radius (no more than 60° bank)
8. **Power** Increase to recover by 1500 feet AGL after 3 rotations
 Engine should be cleared out approximately every 15 seconds by advancing the throttle and then returning it to idle

Steep Spirals may only be made over unpopulated areas and must terminate by 1500 feet AGL. Additionally, steep spirals may not be continued to a landing but must terminate in a go-around.

180° Power-Off Approach
1. **Altitude** No greater than 1000’ AGL
2. **Flow Pattern** Complete
 Enter maneuver on the downwind leg
3. **Power** Idle (abeam the numbers)
4. **Airspeed** Best glide
5. **Flaps** Extend when landing assured
 Airplane must touch down within the first 200 feet beyond the specified point

180° Power-Off Approaches must be conducted at an airport and may only be conducted after a normal traffic pattern and all appropriate checklists have been completed.